Distinct and dramatic water dissociation on GaP(111) tracked by near-ambient pressure X-ray photoelectron spectroscopy.

نویسندگان

  • Xueqiang Zhang
  • Sylwia Ptasinska
چکیده

Water adsorption and dissociation on a GaP(111) crystal surface are investigated using near-ambient pressure X-ray photoelectron spectroscopy (NAP XPS) in a wide range of pressures (∼10(-10)-5 mbar) and temperatures (∼300-773 K). Dynamic changes in chemical evolution at the H2O/GaP(111) interface are reflected in Ga 2p3/2, O 1s, and P 2p spectra. In the pressure-dependent study performed at room temperature, an enhancement of surface Ga hydroxylation and oxidation with an increase in H2O pressure is observed. In the temperature-dependent study performed at elevated pressures, two distinct regions can be defined in which drastic changes occur in the surface chemistry. Below 673 K, the surface Ga hydroxylation and oxidation progress continuously. However, above 673 K, a large-scale conversion of surface O-Ga-OH species into non-stoichiometric Ga hydroxide along with oxidation of surface P atoms occurs through an intermediate state. The NAP XPS technique enabled us to experimentally track the chemistry at the H2O/GaP interface under near-realistic conditions, thereby providing evidence to compare with recent theoretical efforts to improve the understanding of water-splitting mechanisms and photo-corrosion on semiconductor surfaces.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Autocatalytic water dissociation on Cu(110) at near ambient conditions.

Autocatalytic dissociation of water on the Cu(110) metal surface is demonstrated on the basis of X-ray photoelectron spectroscopy studies carried out in situ under near ambient conditions of water vapor pressure (1 Torr) and temperature (275-520 K). The autocatalytic reaction is explained as the result of the strong hydrogen-bond in the H2O-OH complex of the dissociated final state, which lower...

متن کامل

Near-Ambient-Pressure X-ray Photoelectron Spectroscopy Study of Methane-Induced Carbon Deposition on Clean and Copper-Modified Polycrystalline Nickel Materials.

In order to simulate solid-oxide fuel cell (SOFC)-related coking mechanisms of Ni, methane-induced surface carbide and carbon growth was studied under close-to-real conditions by synchrotron-based near-ambient-pressure (NAP) X-ray photoelectron spectroscopy (XPS) in the temperature region between 250 and 600 °C. Two complementary polycrystalline Ni samples were used, namely, Ni foam-serving as ...

متن کامل

In situ investigation of degradation at organometal halide perovskite surfaces by X-ray photoelectron spectroscopy at realistic water vapour pressure.

Near-ambient-pressure X-ray photoelectron spectroscopy enables the study of the reaction of in situ-prepared methylammonium lead iodide (MAPI) perovskite at realistic water vapour pressures for the first time. We show that MAPI decomposes directly to PbI2, HI and NH3 without formation of methylammonium iodide, allowing us to distinguish between alternative mechanisms for the atmospheric degrada...

متن کامل

High-Pressure Studies of CO Adsorption on Pd(111) by X-ray Photoelectron Spectroscopy and Sum-Frequency Generation

High-pressure CO adsorption on Pd(111) was examined by X-ray photoelectron spectroscopy (XPS) and vibrational sum frequency generation (SFG) from 200 to 400 K, and in a pressure range from 10-6 to 1 mbar. Even in the millibar regime both methods indicated that CO adsorbed in “regular” adsorption sites such as hollow, bridge, and on-top. By combination of XPS and SFG, a quantitative analysis of ...

متن کامل

A high-pressure-induced dense CO overlayer on a Pt(111) surface: a chemical analysis using in situ near ambient pressure XPS.

We investigated the high-density CO adsorption phase formed on a Pt(111) surface when exposed to CO gas of pressure ranging from UHV to 100 mTorr using near-ambient-pressure (NAP)-XPS. Combined results from the NAP-XPS measurements and DFT calculations reveal the adsorption structure of CO molecules in the dense CO overlayer, which is stable under realistic conditions.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical chemistry chemical physics : PCCP

دوره 17 5  شماره 

صفحات  -

تاریخ انتشار 2015